Roll No.

41182

B. Sc. (Pass Course) 4th Semester Examination – May, 2019

MATHEMATICS - II (SPECIAL FUNCTIONS AND INTEGRAL TRANSFORMS)

Paper: 12BSM242

Time: Three hours [[Maximum Marks: 40

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. 9 (Section – V) is compulsory.

SECTION - I

1. (a) Find the series solution of the following differential equation about x = 0: $3\frac{1}{2}$

$$x(1-x)\frac{d^2y}{dx^2}-3x\frac{dy}{dx}-y=0$$

(b) Find power series solution of following initial value problem: $3\frac{1}{2}$

P. T. O.

$$(x^2-1)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + xy = 0, y(0) = 2, y'(0) = 3$$

(a) Solve the following equation in terms of Bessel's function:

$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - 25) y = 0$$

(b) State and prove orthogonality relation of Bessel's function. $3\frac{1}{2}$

SECTION - II

- 3. (a) Using Rodrigue's Formula, show that $P_n(x)$ satisfies the differential equation $\frac{d}{dx} \left[(1-x^2) \frac{d}{dx} P_n(x) \right] + n(n+1) P_n(x) = 0 \quad \text{Where}$ $P_n(x) \text{ is Legendre polynomial of order n.} \qquad 3\frac{1}{2}$
 - (b) Discuss orthogonality of Legendre's polynomial.
- 4. (a) Expand e^{2x} in a series of Hermite's polynomial. $3\frac{1}{2}$
 - (b) If $\phi_n(x) = e^{-\frac{x^2}{2}} H_n(x)$, where $H_n(x)$ is a Hermite's polynomial of degree n, then show that : $3\frac{1}{2}$

$$\int_{-\infty}^{\infty} \phi_{m_n}(x) \, \phi_n(x) \, dx = 2^2 \times n! \, \sqrt{\pi} \, \delta_{mn}$$

where δ_{mn} is Kronecker delta.

- **8.** (a) The temperature u in a semi infinite rod is determined by $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$; $0 \le x < \infty$ with conditions:
 - (i) u = 0 when t = 0, x > 0
 - (ii) $\frac{\partial u}{\partial x} = -\mu$ when x = 0
 - (iii) $\frac{\partial u}{\partial x} \to 0$ as $x \to \infty$

Determine temperature formula.

(b) Find finite cosine transform of $\left(1 - \frac{x}{\pi}\right)^2$. $3\frac{1}{2}$

SECTION - V

- **9.** (a) Find radius of convergence of series $\sum_{m=0}^{\infty} m! x^m = 2$
 - (b) Define relation between Fourier and Laplace transform.
 - (c) Define Hermite's differential equation. 2
 - (d) Prove that $P_n(1) = 1$ where P_n is Legendre polynomial of degree n.
 - (c) Find finite Fourier sine transform of $f(x) = x^3$. 2
 - (1) Give first shifting property of inverse Laplace Transform.